Very Large-Scale Neighborhood Search for Solving Multiobjective Combinatorial Optimization Problems

نویسندگان

  • Thibaut Lust
  • Jacques Teghem
  • Daniel Tuyttens
چکیده

Very large-scale neighborhood search (VLSNS) is a technique intensively used in single-objective optimization. However, there is almost no study of VLSNS for multiobjective optimization. We show in this paper that this technique is very efficient for the resolution of multiobjective combinatorial optimization problems. Two problems are considered: the multiobjective multidimensional knapsack problem and the multiobjective set covering problem. VLSNS are proposed for these two problems and are integrated into the two-phase Pareto local search. The results obtained on biobjective instances outperform the state-of-the-art results for various indicators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Very Large-Scale Neighborhood Search

Neighborhood search algorithms are often the most effective approaches available for solving partitioning problems, a difficult class of combinatorial optimization problems arising in many application domains including vehicle routing, telecommunications network design, parallel machine scheduling, location theory, and clustering. A critical issue in the design of a neighborhood search algorith...

متن کامل

Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search

A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production manag...

متن کامل

The multiobjective multidimensional knapsack problem: a survey and a new approach

The knapsack problem (KP) and its multidimensional version (MKP) are basic problems in combinatorial optimization. In this paper we consider their multiobjective extension (MOKP and MOMKP), for which the aim is to obtain or to approximate the set of efficient solutions. In a first step, we classify and describe briefly the existing works, that are essentially based on the use of metaheuristics....

متن کامل

A Simple yet Efficient Multiobjective Combinatorial Optimization Method Using Decomposition and Pareto Local Search

Combining ideas from evolutionary algorithms, decomposition approaches and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: MoMad. It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MoMad evolves three populations: popula...

متن کامل

A very large-scale neighborhood search algorithm for the multi-resource generalized assignment problem

We propose a metaheuristic algorithm for the multi-resource generalizedassignment problem (MRGAP). MRGAP is a generalization of the generalized assignmentproblem, which is one of the representative combinatorial optimization problems knownto be NP-hard. The algorithm features a very large-scale neighborhood search, which is amechanism of conducting the search with complex and po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011